


CHAPTER 3
RADIAL FLOW TO WELLS

Principles & Concepts

As seen in previous chapters, pumping wells can dramatically change
groundwater flow velocities and flow directions. Measurement of the magnitude
of change is usually quantified by the amount and areal extent of drawdown
created by a pumping well. Groundwater moves into a pumping well in response
to the lowering of the hydraulic head in the well relative to the surrounding
aquifer. This lower hydraulic head in the well is caused by the removal of water
from the wellbore by a pump, bucket, or some other device. The removal of
water from the well creates a hydraulic gradient in all directions that is inward
toward the well (radial flow). In this view, a pumping well is a vertical shaft
extending into the aquifer to a depth below the water table (unconfined aquifer)
and creates a cone of depression in the water table or potentiometric surface
around the pumping well (Figure 3.1).

Figure 3.1. Simulated cone of depression showing potentiometric
surface around a pumping well and vectors of hydraulic gradient.

A variation of this concept is the special case of a flowing artesian well,
whose hydraulic head in the well is naturally higher than the land surface. This
relation causes water to flow out of the well without the aid of a pumping device
(Figure 3.2). Flowing artesian wells are becoming far more rare as groundwater
resources become depleted and potentiometric surfaces decline below land
surface elevations.
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Figure 3.2. Discharge from a flowing artesian well at Prairie Du Chien,
Wisconsin, in 1885 (T.C. Chamberlin, 1885).

Groundwater hydrologists have developed several quantitative methods
for predicting the drawdown around a pumping well. These equations commonly
are used for regulatory compliance to estimate how future pumping will alter
groundwater levels. The equations also are commonly used by expert witnesses
in court to estimate what effect pumping may have had on water levels,
especially in cases where there are few historic water-level measurements. For
example, groundwater hydrologists may want to forecast the effect of a new
industrial, irrigation, or municipal well on existing groundwater users before the
new well is constructed. Another example is the use of these equations to design
a dewatering or depressurizing system that will be put to use before excavation of
earth for a large foundation under a building, bridge, or tunnel.

This chapter focuses on some of the quantitative methods used to predict
the response of an aquifer to an applied pumping stress. In making these
predictions, we simulate the response of the aquifer to the pumping stress using a
mathematical model of the groundwater flow systtm. The model is a
representation of the groundwater flow system in mathematical terms. It
combines the geology of the site with appropriate equations describing the
physics of groundwater flow.

The mathematical groundwater flow models presented in this chapter
are in the form of radial flow equations having continuous variables in space and
time that describe the aquifer, well characteristics, and pumping stress at the site
of interest. These mathematical models require simplifying assumptions
concerning the geology and the nature of the pumping stress. This simplification
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is needed because real conditions are more complex than those represented by the
equations. For example, to use the mathematical model the geology commonly
must be simplified but still be sufficiently realistic to calculate a reasonable
aquifer response to the pumping stress for the intended purpose.

Equations describing groundwater flow to a well can be classified
according to whether the equation describes steady-state flow or transient flow to
the well. ~ Under steady-state conditions, water levels in the aquifer no longer
change with time in response to pumping. This lack of change implies that the
areal extent of the cone of depression developed around the pumping well is in
equilibrium with the pumping stress and that the amount of water produced by
the well is balanced by an equal amount of water entering the aquifer as recharge
or as leakage across confining layers. If steady-state conditions exist, hydraulic
gradients do not vary with time, although they may vary from place to place
within the aquifer. Steady-state conditions also imply that there is no net change
in the amount of water in storage, because water levels in the aquifer are neither
rising nor falling. Thus, steady-state equations of groundwater flow have no
storage coefficient term and no time term.

Under transient conditions, water levels change with time. Thus,
hydraulic gradients can change temporally and spatially as water moves into or
out of storage. Transient equations like the Theis equation contain storage
coefficient and time terms and describe the change in drawdown around a
pumping well.

The shape of the cone of depression around a pumping well is
influenced by both the aquifer itself and by the construction and operation of the
well. If the well screen penetrates the entire saturated thickness of aquifer, then
the well is said to be fully penetrating. If the well screen penetrates only a
portion of the aquifer, then the well is said to be partially penetrating. In fully
penetrating wells, equipotential lines are vertical and flow lines are radially
horizontal. Thus, the same head is measured at the top as at the bottom of a
vertical line through the aquifer. In a partially penetrating well, equipotential
lines curve and flow lines must also curve to maintain their orthogonal relation.
As seen in Figure 3.3, hydraulic heads near the partially penetrating pumping
well can differ substantially depending on the depth of measurement. Therefore,
the Theis equation becomes a poor predictor of drawdowns near a partially
penetrating pumping well because some of its assumptions are violated.




3-4  Chapter Three

Fully Penetrating
Pumping Well

; |

Potentiometric

Confining Layer

Confined Aquifer

B e L PIS DU

[ "N ST e

e o e o e e s i e e e ——

NN E

Equipotentials Flow lines

Partially Penetrating
Pumping Well

: 1

Rotentiog,, gurface

K

Confining Layer

Equipotentials Flow Lines

Figure 3.3. (A) A fully penetrating well produces horizontal flow lines
and vertical equipotential lines. (B) A partially penetrating well produces
vertical equipotential lines and horizontal flow lines only in regions
distant from the pumping well. Near the pumping well, the equipotential
lines curve in response to the length and position of the partially
penetrating well screen. Hydraulic heads will differ with depth where
the curvature of the equipotential lines is substantial.
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Problem 1

THEIS EQUATION FOR DISTANCE
VERSUS DRAWDOWN

Fire Protection Well, River Bend Station Nuclear
Power Plant, St. Francisville, Louisiana

Overview

Radial flow of groundwater to a pumping well can be mathematically expressed
by combining various forms of Darcy’s Law with equations of continuity. Flow
to wells in confined or unconfined aquifers and under steady-state or transient
conditions can be addressed mathematically. One of the most basic methods and
simplest sets of conditions describes a confined aquifer with transient flow to a
well that penetrates the entire saturated thickness of the aquifer (i.e., the well is
fully penetrating). Theis (1935) was the first to represent these conditions in
mathematical terms. Figure 3.4 shows flow to a fully penetrating well in a
confined aquifer where the flow is horizontal and radial.

Pumping Well
Initial
Potentiometric
Surface \
[ Sace o) T e |
Confining Layer
| |
| I -
| |
hO h k#‘.,' |
| | | |
} :'\ Confined Aquifer
Screen
Confining Layer

Figure 3.4. Conceptualization of radial flow to a fully penetrating
pumping well showing initial and pumping potentiometric surfaces. Two
observation wells at radii r; and r, illustrate the spatial variation in
drawdowns sy and s,. The saturated thickness of the aquifer is b and
drawdown in the pumping well is s,,.

In 1935 C.V. Theis published his original paper, which described the
analogous transient behavior of heat flow to a line sink in an infinite conductive




3-6 Chapter Three

solid and groundwater flow to a well in an infinite aquifer. The mathematical
formulation he presented described the amount of drawdown (s) created by a
pumping well at any time () after pumping commences, at any radial distance
(r). This mathematical model became known as the Theis equation and requires
certain assumptions about the nature of the aquifer, the pumping rate, and the
design of the well. The Theis equation is as follows

o} e;y
s:ho—h=—Q— _[ du (3-1)
AzT * u
where
s is drawdown at any time and distance from the pumping well
@L),
hy is initial hydraulic head at any distance [ = 0] (L),
h is hydraulic head at the same distance after elapsed time [7 = t]
(L),

is discharge from pumping well (L*/T),
is the transmissivity of the aquifer (L*/T), and
is the Theis equation parameter.

T N_NQ

The Theis equation parameter (u) is defined as

rs

u= 3-2
ATt G2

where

is radial distance from the pumping well to any distance (L),
is storage coefficient (L*/L?),

is transmissivity (L%/T), and

is elapsed time since the beginning of pumping stress (T).

S~ N Y

The assumptions inherent in the Theis equation are as follows:

Aquifer - isotropic, homogeneous, uniform thickness, flat lying, infinite
in areal extent, overlain and underlain by impermeable layers, releases
water instantaneously from storage.

Well - fully penetrates the aquifer, discharges at a constant rate, no
borehole storage.

The Theis equation (equation 3-1) cannot be integrated directly but can be
approximated using the following expansion.

2 3 4
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To simplify the expression, the entire series expansion is usually denoted by the
term W(u), which is called the Theis well function. Thus, the Theis equation can
be written in a simplified form.

s = ho—h = L W(U) (3-4)

where

W(u)  is the Theis well function, and
u is the Theis equation parameter and is the argument of the
function.

We use the series expansion (equation 3-3) of the integral to solve the
Theis equation with Excel. (See Appendix D for a list of W(u) versus u values).
This first exercise entails programming the Theis Well Function #{(u) into the
“Distance-Drawdown” worksheet and solving the Theis equation for drawdown
(s) at various values of time (¢) and distance (7). Because each successive term in
the infinite series becomes smaller and smaller, W(u) is approximated by
accounting for a finite number of terms. The separate terms are then summed to
obtain an approximate value of the integral. The number of terms we use differs
between problems but is usually six to ten. We limit the approximation to ten
terms in this exercise to illustrate the nature of the Theis well function.

The Theis equation is a powerful tool for estimating the effects of future
and previous pumping stress on nearby water levels. These predictions are
predicated on the Theis equation being a realistic model of the actual flow
system. To determine whether the Theis equation is a realistic mathematical
model, the user must check to see if the simplifying assumptions required of the
Theis equation compare favorably with the actual conditions at the site. Many of
the assumptions apply only to the area influenced by the pumping stress. For
example, the aquifer must be isotropic and homogeneous throughout the area
influenced by the pumping stress. If all the assumptions are met, then
calculations based on the Theis equation may be reasonable. If the assumptions
are not met, then use of the Theis equation may yield erroneous estimates.

Another check on the suitability of using the Theis equation to make
predictions can be made with the results from a multiple-well aquifer test. This
test is a controlled field experiment performed to determine whether observed
time-drawdown behavior matches theoretical time-drawdown behavior based on
the Theis equation. If the observed response matches the response predicted by
the Theis equation, then use of the Theis equation as a mathematical model
should produce reasonable results, at least in the short term. The aquifer test data
also can be used to estimate site-specific values of transmissivity and storage
coefficient in other mathematical models that are used to make predictive
calculations. More information about aquifer tests and their interpretation is
found in Chapter 5.

An additional aquifer characteristic used to describe the ability of water
to move through an aquifer is transmissivity. Transmissivity (7) is the rate of
flow under a unit hydraulic gradient through a cross section of the aquifer that
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has a unit width for the entire saturated thickness of the aquifer. It is determined
by the following equation.

I'=Kb (3-5)
where
T is the transmissivity of an aquifer (L%/T),
K is the hydraulic conductivity (L/T), and
b is the saturated thickness of the aquifer (L).

It is tempting to use the Theis equation to compute the drawdown in the
pumped well itself using a radius representing the size of the wellbore or the size
of the sand filter or gravel pack. This approach may greatly underestimate the
drawdown that actually occurs in the pumped well because of additional
drawdown caused by frictional losses created as water moves through the sand
filter or gravel pack and across the screen. The Theis equation does not account
for this additional drawdown, which is collectively known as well loss. It is
possible to estimate the amount of additional drawdown in the pumped well
owing to well losses for a given pumping rate on the basis of analysis of a step-
drawdown test performed in the pumping well (Kruseman and de Ridder, 1990).
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- e “#DIV/0!” will appear in cells if a division by zero error has occurred.

- #DIV/0! displays if the denominator in any formula is zero including
reference cells that may also contain an error. Thus, one “#DIV/0!” error
may propagate through the worksheet to multiple cells. Check your formulas
for accuracy to avoid these errors.

» Save your work often to avoid losing information.

Parameter Definition

b Saturated thickness of the aquifer (L)

hy Initial hydraulic head at any distance (L)

h Hydraulic head at the same distance after elapsed time (L)
K Hydraulic conductivity of the aquifer (L/T)

0] Discharge from pumping well (L°/T)

¥ Radial distance from the pumping well to any distance (L)
S Storage coefficient (L*/L")

Drawdown at any time and distance from the pumping well

=]

L)
T Transmissivity of the aquifer (L*/T)
t Elapsed time since the beginning of the pumping stress (T)
i Theis equation parameter
W(u) Theis well function

Table 3.1 Parameter Definition Table — Chapter 3, Problem 1
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Problem 2

THEIS EQUATION FOR TIME VERSUS
DRAWDOWN

Dewatering System, River Bend Station Nuclear
Power Plant, St. Francisville, Louisiana

Overview

The temporary lowering of the water table in shallow aquifers to facilitate
excavation of rock or sediment before construction of foundations for buildings,
bridges, and construction of tunnels is a common practice. This problem
examines the dewatering of an unconfined shallow aquifer in Louisiana for the
construction of a nuclear power plant. The River Bend Station power plant was
constructed northwest of Baton Rouge, Louisiana, outside the town of St.
Francisville. In order to excavate the 41-acre footprint of the foundation for the
buildings to a depth of approximately 100 feet, the water table needed to be
lowered 65 feet to facilitate excavation and construction in dry conditions. The
water table was lowered by installing 44 high-capacity pumping wells around the
perimeter of the excavation and discharging the pumped water to a local bayou
(see the Overview of Problem 2 on the CD).

The Theis equation can be used to predict the long-term behavior of
water levels in both confined and unconfined aquifers if certain assumptions are
valid. These assumptions include the Theis assumptions regarding the aquifer
and the pumping well that are described in Problem 1 of this chapter and for the
long-term behavior of water levels in unconfined aquifers. In unconfined
aquifers, the Theis equation can be a reasonable predictor of long-term water
levels. The late-time drawdown response to a pumping well in an infinite
unconfined aquifer is consistent with the Theis assumptions except that the late-
time response is controlled by the specific yield, not by the coefficient of storage
(Kruseman and de Ridder, 1990).

Well Interference

Pumping a well causes water levels in the aquifer to draw down and form a
conical depression in the water table of an unconfined aquifer or in the
potentiometric surface of a confined aquifer.

If two pumping wells are in proximity, their individual cones of
depression may overlap. In this case, the calculated drawdowns from each well
are additive in areas where the cones overlap, such that the total drawdown at any
location in the aquifer is the sum of that produced by the two pumping wells
(Figure 3.6). The additive nature of drawdowns is known as well interference
and refers to the composite drawdown produced by two or more pumping wells.
For example, if well A created 3 feet of drawdown halfway between wells A and
B, and well B created 2 feet of drawdown at this same point, then the composite
(total) drawdown would be 5 feet at this halfway point.
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Figure 3.5. Water-table configuration showing a cone of depression
forming around a pumping well. The magnitude of the hydraulic
gradient is represented by the arrows increasing in length closer to the
pumping well.
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Figure 3.6. Well interference between two pumping wells (A and B)
showing the additive nature of drawdown: (1) shows individual cones of
depression around each well and (2) shows the composite cone of
depression produced by both wells (modified from Heath, 1998).
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The Theis equation can be used to compute the size and shape of a
composite cone of depression from two or more pumping wells. These
calculations become more complicated if several wells are pumping, the wells are
at different distances from the points of interest, and they are pumping at
different rates.  The following general form of the Theis equation is used to
make these composite drawdown calculations of the long-term behavior in an
unconfined aquifer.

9 Y
S = —=W(u,)+ 9, W) +..+——=W(u,) (3-6)
4T 4T 4T
where
Searai is the composite drawdown at the point of interest produced by
n pumping wells (L),
n is the number of wells,
O, is the discharge rate of each pumping well (L*/T),
T is the transmissivity (L*/T), and
U, is the Theis equation parameter for each well.
2
r-S
u, =—-= (3-7)
4Tt
where
#y is radial distance from each pumping well to the point of
interest (L),
S, is specific yield (L*/L?), and
t is elapsed time since the beginning of the pumping stress (T).

As you can no doubt appreciate, spreadsheets can greatly assist in
making these calculations.
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¢  Using the F2 key on a cell with a formula will highlight the reference cells
used in the formula. This highlighting allows you to more easily evaluate
the aceuracy of the formula programmed into the cell.
s Excel will give an error message if a programming error occurs such as
illustrated below with missing parentheses. However, Excel will not
necessarily give an error if the formula is entered incorrectly.

Microsoft Excel

Microsoft Excel found an error in the formula you entered, Do you want to accept the correction proposed below?

=(B7{7.48)

+ To accept the correction, click Yes.
+ To close this message and correct the formula yourself, click ho,

o “#DIV/0!” will appear in cells if a division by zero error has occurred.
“#DIV/0!” displays if the denominator in any formula is zero, including
formulas in reference cells that may also contain an error. Thus, one
“#DIV/0!” error may propagate through the worksheet to multiple cells.
Check your formulas for accuracy to avoid these errors. i

¢ “#NUM” will appear in the /¥{(u,) terms prior to programming the input
parameters in the worksheet. This designation should resolve once the
worksheet programming is complete.

‘e Save your work often to avoid losing information.

Parameter Definition

b Saturated thickness of the aquifer (L)

h, Initial hydraulic head at any distance (L)

h Hydraulic head at the same distance after elapsed time (L)

n Number of wells

0, Discharge from each pumping well (L°/T)

n Radial distance from the pumping well to any point (L)

S Drawdown at any time and distance from the pumping well
L)

Stotal Composite drawdown at the point of interest produced by n
pumping wells (L)

S, Specific yield (L*/L%)

T Transmissivity (L*/T)

t Elapsed time since the beginning of the pumping stress (T)

U, Theis equation parameter for each well

W(u) Theis well function

Table 3.2 Parameter Definition Table — Chapter 3, Problem 2




Problem #1: Theis Equation for Distance versus Drawdown

Fire Protection Well, River Bend Station Nuclear Power Plant, St. Francisville, Louisiana

The extraordinary safety concerns at a nuclear power plant require that cooling water for the
plant be from a different source than water for fire protection. At River Bend station, cooling water is
obtained from the Mississippi River at an intake structure about a mile from the plant, where the water
is clarified and then pumped to the plant. Groundwater from a well completed to a depth of 1,800 feet
into the Tertiary Zone 3 aquifer is used for fire protection.

River Bend station is one of eight nuclear power plants operated by Entergy Operations, Inc. in
the southern and northeastern United States. River Bend station is located 24 miles north of Baton
Rouge, Louisiana in West Feliciana Parish. The 3,300-acre site abuts the Mississippi River on the west.
The power plant itself is located about a mile to the east on a bluff overlooking the river (Figure 3.1.1).
River Bend station is capable of producing 980 megawatts of electricity. In 2003, it produced 7,600,000
megawatt hours that were used by more than 2 million customers in Louisiana, Mississippi, Texas, and
Arkansas.

SCALE 1:7.500,000
0 25 50MILES

0 2550 KILOMETERS

Figure 3.1.1. Location of River Bend station power plant outside of St. Francisville, Louisiana, on the
upland adjacent to the Mississippi River.

As part of the licensing documentation required by the U.S. Nuclear Regulatory Commission, the
amount of drawdown produced during a fire at River Bend station in the nearest well also completed in
the Tertiary Zone 3 aquifer has to be estimated. The Theis equation can be used to make this estimation.

Based on performance and analysis of an aquifer test in the fire protection well, a maximum
sustainable yield of 900 gallons per minute can be used in this calculation and site-specific values of
transmissivity and storativity are 35,200 gallons per day per foot and 0.00072, respectively.
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The nearest well also completed in the Tertiary Zone 3 aquifer was operated by the Crown-
Zellerbach Corporation and located 7,500 feet away, on the other (west) side of the Mississippi River
(Figure 3.1.2). Like many similar engineering calculations, unknown values of parameters, such as the
duration of pumping the fire protection well, are addressed conservatively by using a value that
overestimates (in this case) the amount of drawdown in the Crown-Zellerbach well. Hence, the fire
protection well at River Bend station was assumed to operate for the entire 40-year design life of the
power plant.

Questions for Problem #1: Answer the questions 1-4 in Excel file ch3_p1.xls.

Crown- River Bend
Zellerbach Station
Well Mississippi River ~ VVell
et - 7500 feet - R
= (0 Jest £ 200 oo
: ~— Overlying confining layers and aquifers
= oLl et el bkl eed 1 S
- -__;. 'Ife..rtiar.y. .zun.e -S.p;quer ;_- . Y .

Figure 3.1.2. Schematic diagram of Crown-Zellerbach well and fire protection well at River Bend station.

Problem #2: Theis Equation for Distance versus Drawdown

Dewatering System at River Bend Station Nuclear Power Plant, St. Francisville, Louisiana

As seen in Problem 1 of this chapter, the River Bend station nuclear power plant was constructed near
the Mississippi River in Louisiana. During the six-year construction project, an excavation covering 41
acres and up to 100 feet deep (Figure 3.2.1) was created to construct the foundation for the reactor
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building, the cooling water towers, radwaste building, and other structures. To complete this task, the
shallow unconfined aquifer in the surficial loess, Port Hickey silts and clays, and the Citronelle Formation
sands and gravels had to be dewatered and the water table lowered 65 feet. A temporary dewatering
system was installed to maintain the water table below the bottom of the excavation so that
construction could occur under dry conditions. The dewatering system contained 44 wells (see Figure
3.2.2) spaced around the perimeter of the excavation. Each well is approximately 145 feet deep,
equipped with a turbine pump powered by a diesel engine and capable of pumping 700 gallons per
minute through 12-inch diameter screen (see Figure 3.2.3).

Figure 3.2.1 The 41-acre 100-foot deep excavation at River Bend station created for construction of the
nuclear power plant and other structures had bench cuts at the edge of excavation. The access ramp is
seen on the bottom left of the photograph.
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Figure 3.2.2 Close up of bench cuts in silt material along the edge of the excavation. Three dewatering
wells are seen along the perimeter of the excavation.

Figure 3.2.3 One of the 44 dewatering wells surrounding the excavation at River Bend station.
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The combined discharge from all 44 wells was released into a nearby bayou that flowed to the
Mississippi River. The dewatering system operated during two separate construction phases over a six-
year period. The maximum combined discharge from the 44 wells was more than 22,000 gallons per
minute (31.7 million gallons per day) but averaged about 7,700 gallons per minute (11 million gallons
per day) (see Figure 3.2.4).

The cones of depression from the 44 dewatering wells interfere with each other to create a
composite cone of depression. Because drawdown is linearly additive, the size and shape of the
composite cone of depression can be estimated using the Theis equation. The spreadsheet problem uses
the Theis equation to predict the long-term behavior of the water table under various pumping
scenarios (see Reference Book). Using the Theis equation is a reasonable approach to this problem that
entails making estimates of flow system behavior several years into the future because the period of
delayed yield in most unconfined aquifers only persists from several hours to a few days. After this short
period of time, the long-term time-drawdown behavior can be characterized with the Theis equation
using a value of specific yield instead of the coefficient of storage.

Questions for Problem #2: Answer the questions 1-5 in Excel file ch3_p2.xls.

Figure 3.2.4 Combined discharge of the 44 dewatering wells into a local bayou.
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